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a b s t r a c t

We present a non-dimensional analytical model for crack propagation in a z-pinned double cantilever

beam specimen (DCB) under mode I loading. Effect of various design parameters on the crack bridging

length and apparent fracture toughness are investigated using this model. The efficacy of the analytical

model is evaluated by comparing the results with 3D finite element (FE) simulations of the DCB. In the FE

model the z-pins are modeled as discrete nonlinear elements. Bi-linear cohesive elements are used ahead

of the crack tip to account for the interlaminar fracture toughness of the composite material. The results

for load–deflection and crack length obtained from the analytical model and the FE model are compared

and found to be in good agreement. The proposed non-dimensional analytical model will be useful in the

design and analysis of translaminar reinforcements for composite structures.

Ó 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials are widely used in aerospace and automo-

bile structures, sporting goods and military equipment since they

show superior specific stiffness and strength. Delamination is one

of the most significant damage modes in laminated composites

and is a key element of consideration in design and operation. It

is well known that translaminar reinforcements can enhance the

delamination resistance and damage tolerance of composites sig-

nificantly [1–4]. It is also known that sparse through-the-thickness

reinforcements are not beneficial, and at the same time excessive

amount of reinforcement is also deleterious as it results in damage

to the composite structure and degradation in its properties [4]. The

effect of z-fiber on delamination of composites has been extensively

studied. Experimental approaches involve measurement of appar-

ent fracture toughness [5], characterization of pull-out process of

z-fiber [6,7] and crack propagation [7]. Analytic models are also

available to find apparent fracture toughness and to establish the

relationship among various design parameters [8–13]. Most ana-

lytic models used beam or plate models in which stitches are repre-

sented by an effective bridging force. Either Euler–Bernoulli beams

[9–13] or Timoshenko beams [8,9] are used in association with

discrete element [10] or continuous element [8,9,11–13] for the

stitches. Numerical studies focused on crack initiation and progres-

sive delamination in which J-integral [7], virtual crack closure

technique (VCCT) [15] and cohesive zone method [14,16] were

primarily used along with beam elements [14], plane strain

elements [7], solid elements [16] or shell elements [15]. Sankar

and Hu [17] used beam elements and spring elements similar to

cohesive zone elements to simulate dynamic delamination propa-

gation due to impact.

While FE models that account for each and every reinforcement

may be more accurate in predicting the damage characteristics,

they tend to be computationally expensive for realistic structures.

On the other hand analytical models that smear the reinforcements

as a continuous element are efficient and provide insight into the

mechanics, but tend to be unrealistic in some situations.

A summary of past work in this area is provided in Table 1. In the

following we briefly describe the salient features of the work listed

in that table. Cartie [7] suggested a bi-linear bridging law through

experiments and conducted FE simulation using plain strain ele-

ments. Robinson and Das [11], Mabson and Deobald [12] and Byrd

and Birman [13] used linear softening bridging model whereas

Ratcliffe and O’brien [10] proposed discrete element analytical

model. For delamination modeling of z-pinned DCB, Dantuluri et

al. [14] used 2D cohesive elements incorporating beam elements

and a bi-linear bridging law. Ratcliffe and Krueger [16] used 3D

cohesive model with solid elements. Grassi and Zhang [15] used

VCCT for delamination modeling. It is clear from the table that var-

ious researchers have used different approaches in modeling the

stated problem. Our goal here is to use both analytical and numer-

ical approaches and compare them with available experimental

data. In particular, we have developed a non-dimensional model

that will be useful in the design of translaminar reinforcements

for a given application. In particular we have used a 3D shell model
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in conjunction with 3D cohesive elements. Both linear softening

law and more realistic tri-linear bridging law are used to model

the z-pins. In order to clarify the role of z-pins, a non-dimensional

analytical model is proposed. The solution of the non-dimensional

equation uses an iterative procedure. We have also derived an

expression for the maximum density of z-pins that can be allowed

before the beam fails otherwise. The efficacy of the analytical model

is verified by finite element simulation of the DCB specimen. We

have used the example given in [7] for this purpose. In the FE sim-

ulation, the ligaments of the DCB are modeled using shell elements.

Cohesive elements are used to simulate the delamination and dis-

crete nonlinear elements are used to model the z-pins. The agree-

ment between the analytical model and FE simulations is found

to be excellent for various results such as load–deflection, load-

crack length, and effective fracture toughness.

It was found that steady-state bridging length and maximum

apparent fracture toughness can be related to interlaminar fracture

toughness of the composite and maximum frictional force sup-

ported by z-pins. The relationships among various parameters are

non-dimensionalized and the maximum pin friction that can be

allowed before the composite beam itself fails is calculated. The

non-dimensional analytical model could be a useful design tool

in selecting z-pins for composite structures to improve interlami-

nar fracture toughness.

2. Non-dimensional analytical model

Consider a z-pinned composite DCB specimen of thickness 2h

with initial crack length of a0 and subjected to Mode I loading as

shown in Fig. 1a. A pair of transverse forces F is applied at the tip

of the DCB. Due to the applied transverse force F the initial crack

tends to reach the current crack length denoted by a (Fig. 1b).When

the crack reaches the region reinforced by z-pins, a bridging zone of

length c begins to develop (Fig. 1c).We can define an apparent crack

length ap which is the length of the crack up to the beginning of

bridging zone. Current crack length (a) is the sum of the apparent

crack length (ap) and the bridging length (c). When the z-pins start

to be completely pulled out of the composite as shown in Fig. 1d,

the bridging zone becomes fully developed and a new fracture sur-

face is created in the z-pinned zone. Therefore in the bridging zone

Table 1

Summary of results obtained by various researchers and present study.

Ref. z-Pin in analytic model z-Pin model in FEM Crack propagation

criterion in FEM

Sub-laminate

model in FEM

Comparison with

experimental data

Cartie [7] – Bi-linear traction J integral Plane strain Yes

Mabson and Deobald

[12]

Distributed force

(non-dimensional form-1)

– – – –

Byrd and Birman [13] Distributed force

(dimensional form-1)

– – – –

Robinson and Das [11] Distributed force

(dimensional form-2)

– – – Yes

Grassi and Zhang [15] – Nonlinear spring (bi-linear function) VCCT Shell element Yes

Ratcliffe and O’brien

[10]

Discrete force – – – Yes

Dantuluri

et al. [14]

– Nonlinear spring (bi-linear function) 2D cohesive element Beam element Yes

Ratcliffe and Krueger

[16]

– Nonlinear spring (bi-linear function) 3D cohesive element Solid element –

Present study Distributed force

(non-dimensional form-2)

Nonlinear spring (linear softening

function and tri-linear bridging law)

3D cohesive element Shell element Yes

Fig. 1. Schematic of initial geometry and development of bridging zone by z-pins in the composite DCB.

M.C. Song et al. / Composites: Part B 43 (2012) 1776–1784 1777



the pull-out of pins is partial. Beyond the current crack tip the pins

are assumed to be intact. The relative deflection at the tip of the DCB

is denoted by d as shown in Fig. 1e. Our goal is to determine the

relationships among F, a, c, and d. Once the bridging zone length c

is determined other parameters such as F, a, and d can be found

by solving the governing equations. In the following we describe

the non-dimensional equation governing the bridging zone and

procedures to determine the bridging length for a given load.

We assume that the shear deformation is negligible and use Eu-

ler–Bernoulli beam equations to model the ligaments of the DCB as

shown in Fig. 2b. We also assume that z-pins are rigid and there is

sufficient friction between the z-pins and the composite material

surrounding it. For simplicity, the relation between the frictional

force (f) and pull out or slip distance (ds) is idealized as a linear soft-

ening function as shown in Fig. 3. The validity of this assumption

will be later verified in FE simulation. When the pins are intact they

can exert a maximum friction force of fm. As the pins pull out of the

material, the loss of friction is proportional to the pullout distance

ds. When the pin is completely pulled out of the beam, the friction

force reduces to zero. Thus the f–ds relationship is given by:

f ¼ fm 1ÿ
ds

h

� �
; 0 6 ds 6 h ð1Þ

where h is half the thickness of DCB.

Although the resistance offered by the pins on the beam is dis-

creet, for the purpose of the analytical model we smear the discrete

pin resistance as continuous distributed traction (p) acting on the

crack surfaces as shown in Fig. 2c. Then the traction can be derived

as:

p ¼ Nf ¼ Nfm 1ÿ
ds

h

� �
¼ pm 1ÿ

ds

h

� �
ð2Þ

where N is z-pin density expressed as number of z-pins per unit

area.

The Euler–Bernoulli beam equation for one of the ligaments, say

upper ligament (Fig. 2c), of the DCB can be written as:

EI
d
4
w

dx
4
¼ ÿbp ð3Þ

where b is the beam width. The effective bending rigidity of one of

the ligaments of the DCB is represented by the term EI. Note that the

flexural rigidity for a laminated composite can be taken from the

bending stiffness matrix in classical plate laminate theory. Substi-

tuting for p from Eq. (2) into Eq. (3), we obtain:

EI
d
4
w

dx
4
ÿ bpm

ds

h
¼ ÿbpm ð4Þ

The pullout length ds is equal to 2w, wherew is the deflection of

the top or bottom beam. Hence, the governing equation takes the

form:

EI
d
4
w

dx
4
ÿ 2pm

w

h
¼ ÿbpm ð5Þ

The origin of the x-coordinate is assumed to be the point where

the bridging zone begins. One should note that the origin moves as

the crack propagates. The four boundary conditions (BCs) for bridg-

ing zone are:

wð0Þ ¼ w0; ð0 < w0 6 h=2Þ

Mxð0Þ ¼ apV zð0Þ )
d
2
w

dx
2
ð0Þ ¼ ap

d
3
w

dx
3
ð0Þ

wðcÞ ¼ 0

dw

dx
ðcÞ ¼ 0

ð6Þ

In the above equation w0 is a prescribed deflection at the origin of

the coordinate system as shown in Fig. 2c. This value will be less

than h/2 in the beginning and will increase to a maximum value

of h/2 as the DCB is loaded. Note that the slip distance of the z-

pin is equal to the total opening of the DCB at that location, i.e.

2w(x) = ds(x). As the crack propagates, the bridging zone will also

move with the crack, but the crack opening displacement will re-

main as h at the origin with 2w(0) = ds(0) = h. The terms V and M,

respectively, are the bending moment and transverse shear force

on the beam cross section.

One should note that the bridging length c is still an unknown. It

can be determined from the fact that the strain energy release rate

at the actual crack tip should be equal to the mode I fracture tough-

ness at the instant of crack propagation. The energy release rate

can be determined from the equation derived by Sankar and Sonik

[18] for beam-like specimens containing delamination.

G ¼
ðMðcÞÞ2

bEI
¼

EI

b

d
2
wðcÞ

dx
2

 !2

ð7Þ

Thus the condition for determining c is:

EI

b

d
2
wðcÞ

dx
2

 !2

¼ GIC ð8Þ

Before we solve the above equations we will non-dimensional-

ize the equations and BCs appropriately. Normalizing the length

dimensions by h and forces by Eh2, the governing equation and

the BCs take the following form:Fig. 3. Force–displacement relation of the z-pin.

Fig. 2. Idealization of bridging zone using a beam model.

1778 M.C. Song et al. / Composites: Part B 43 (2012) 1776–1784



d
4
~w

d~x4
ÿ 2~pm ~w ¼ ÿ~pm ð9Þ

~wð0Þ ¼ ~w0; ð0 < ~w0 6 1=2Þ

d
2
~w

d~x2
ð0Þ ¼ ~ap

d
3
~w

d~x3
ð0Þ

~wð~cÞ ¼ 0

d~w

d~x
ð~cÞ ¼ 0

ð10Þ

where

~x ¼
x

h
; ~ap ¼

ap
h
; ~c ¼

c

h
; ~w ¼

w

h
and ~pm ¼

12pm

E

The equation for determining ~c (Eq. (8)) takes the form

d
2
~wð~cÞ

d~x2

 !2

¼ eGIC ð11Þ

where the non-dimensional fracture toughness is given by
eGIC ¼ 12GIC

Eh

The solution for the governing Eq. (9) is:

~wð~xÞ ¼ C1 cos ~k~xþ C2 sin ~k~xþ C3 cosh ~k~xþ C4 sinh ~k~xþ
1

2
ð12Þ

where ~k ¼
ffiffiffiffiffiffiffiffiffi
2~pm

4
p

The boundary condition at the point ~x ¼ 0 varies since deflec-

tion at this point ~w0 increases from zero at the beginning of loading

to 0.5 when the bridging zone is completely developed. Once the

bridging zone is completely developed this value remains constant

at 0.5 with additional increment of ~ap. This is because the bridging

zone is fully developed and it moves with the crack tip as it

advances.

The procedures to solve the above set of equations are shown in

the flow chart depicted in Fig. 4. The initial data includes the beam

properties, characteristics of the z-pins and the fracture toughness

GIC. The deflection at the beginning of the bridging zone (~x ¼ 0) be-

gins to increase as the load is applied.

When ~wð0Þ = 0.5, bridging zone is fully developed and hereafter

the deflection of the beginning of bridging zone is constant. How-

ever, the apparent crack length increases during crack propagation.

We need to use an iterative procedure as the bridging length (~c) is

not known a priori. The strain energy release rate condition at the

right end of the bridging zone (~x ¼ ~c) as given by Eq. (11) is then

used to check for correct value of ~c. When a given ~c satisfies Eq.

(11), then the procedure to determine ~c is terminated. After bridg-

ing zone is fully developed, bridging length corresponding to every

increment of crack length can be determined.

3. Verification

3.1. Sample problem for verifying the non-dimensional analytical

model

In order to verify the analytical model a z-pinned composites

designed by Cartie [7] as shown in Fig. 5 was selected. This z-pin-

ned composite was also used in many previous works [7,15]. The

configurations and material properties are represented in Table 2.

These values were used for both analytical model and FE simula-

tion presented in the next section.

First, load–deflection curve (Fig. 6) was found for ap values

ranging from 52.25 mm to 62.25 mm. Meanwhile the crack length

as the summation of the apparent crack length (ap) and the bridg-

ing length (c) obtained from the procedure depicted in Fig. 4 was

computed. The variation of the bridging length as a function of

DCB deflection d is shown in Fig. 7. The bridging length initially in-

creases with loading until the bridging zone is fully developed,

where the bridging length has the maximum value. In the begin-

ning, the apparent crack length remains constant and the crack

propagation is only due to evolution of the bridging zone. Once

the bridging zone is fully developed there is little change in the

bridging length thus the crack propagation is almost due to the

apparent crack length. In fact there is a slight decrease in the bridg-

ing length after it reaches the maximum as the bending moment

due to the transverse loads applied is a function of the apparent

crack length. If a pair of couple is applied instead of a pair of forces

as in the standard DCB test, then the bending moment will remain

constant as the crack propagates, and one can see a steady state

bridging length.

The force F acting on the DCB and opening displacement d at the

end of the beam can be obtained using the following relations:

F ¼ ÿEI
d
3
w

dx
3

�����
x¼0

ð13Þ

d ¼ 2 wð0Þ þ ap
dw

dx

����
x¼0

þ
1

3

d
3
w

dx
3

�����
x¼0

a3p

 !
ð14Þ

The variations of transverse force and crack length with increments

in opening displacement are shown in Fig. 6. Initially the transverse

force increases with opening displacement and begins to drop as

interlaminar crack in unreinforced region propagates. However,

the transverse force increases during the development of the bridg-

ing zone and decreases again with the movement of the fully devel-

oped bridging zone and the new crack surface.
Fig. 4. Flowchart of the procedures for solving the non-dimensional governing

equation.
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In order to estimate the apparent fracture toughness during

crack propagation we use bending moment at the apparent crack

tip as a measure of increased fracture toughness. This is similar

to calculating the fracture toughness of unreinforced beam using

Eq. (7). Then the apparent fracture toughness is defined as:

GICÿapp ¼
EI

b

d
2
wð0Þ

dx
2

 !2

ð15Þ

The above relation can be non-dimensionalized as:

eGICÿapp ¼
d
2
~wð0Þ

d~x2

 !2

ð16Þ

The variation of apparent fracture toughness during crack prop-

agation is shown in Fig. 8. The apparent fracture toughness in-

creases during development of the bridging length since the

bending moment required at the beginning of bridging zone to

Fig. 5. DCB specimen reinforced by z-pins [7].

Table 2

The various dimensions and properties of the DCB used

in the numerical simulation [6].

b 20 mm

h 1.6 mm

E1 138 Gpa

E2 11 GPa

m12 0.34

G12 4.4 GPa

GIc 258 N/m

a0 49 mm

Fm 18.43 N

z-Pin density 0.5%

z-Pin diameter 0.28 mm

Fig. 6. Load and crack length variation as a function of DCB deflection.

Fig. 7. Bridging length and crack length as a function of DCB deflection.
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overcome the bridging force is increases gradually. Maximum

attainable apparent fracture toughness can be predicted by the

relationship expressed in terms of interlaminar fracture toughness

and bridging force due to z-pins. The relationship is exactly the

same as the equation based on energy balance. As the crack prop-

agates it has to overcome the frictional forces in the z-pins. The

amount of extra work done is equal to the area under the load–

deflection diagram in Fig. 3. Thus the maximum apparent fracture

toughness can be derived as:

GICÿappÿmax ¼ GIc þ N
1

2
fmh

� �
ð17Þ

Multiplying throughout by (12/Eh) we obtain the above relation in a

non-dimensional form as:

eGICÿappÿmax ¼ eGIc þ
1

2
~pm ð18Þ

This maximum value can be realized when a pair of couple is

applied instead of a pair of transverse forces. As shown in Fig. 8

apparent fracture toughness for transverse loading is always less

than the maximum value. Furthermore, our definition of apparent

fracture toughness in Eq. (16) is also slightly different from the

energy based relation given in Eq. (18) making the apparent frac-

ture toughness under transverse loading less than the maximum

realizable value. This is useful in evaluating the increase in appar-

ent fracture toughness for a given design of z-pins. Moreover this

value is related to strain exerted in the ligaments of DCB and will

be discussed later.

3.2. FE simulation for verifying the non-dimensional analytical model

For the sake of comparison with the analytical model, FE simu-

lation of the same specimen using the finite element software,

ABAQUSÒ, was performed. The FE model containing discrete z-pins

can verify the analytical model where z-pins are smeared and rep-

resented by distributed traction. The three-dimensional FE analysis

was used to simulate crack propagation in the DCB specimen with

z-pins. The specimen was modeled using shell elements (S4), and

cohesive elements (COH3D8) were used to simulate progressive

delamination.

The behavior of cohesive elements can be characterized by bi-

linear traction separation law (Fig. 9) [19] given by:

r ¼ ð1ÿ DÞKd

where

D ¼

0; d < d0

df ðdÿd0Þ

dðdfÿd0Þ
; d0 < d < df

1; df < d

8
><
>:

ð19Þ

where r is traction, K is stiffness, D is damage variable, d is displace-

ment, d0 is displacement at damage initiation and df is final dis-

placement .

The above parameters were taken as: K = 106 N/mm,

rm = 35 Mpa and GIC = 0.258 N/mm [7,19].

Nonlinear spring element (CONN3D2) whose behavior is

defined by linearly decreasing force (Fig. 3) for each z-pin was also

implemented between the two ligaments of the DCB (Fig. 10).

The load–deflection curves and the variations of crack lengths

with deflection are shown in Fig. 6. Both FE and analytical model re-

sults are presentedwith that from the experiment by Cartie [6]. The

agreement between the analytical model and the FE simulations is

satisfactory for both load–deflection and delamination length. The

slight discrepancy in the initial slope of the load–deflection curve

between the analytical model and the FE model is due to the fact

that the analytical model uses Euler–Bernoulli beam theory

whereas FE model considered shear deformation as it occurs in test

specimens. The good comparison between the analytical model and

the results from FEA and experiments suggests that the discrete

bridging force can be represented by a distributed traction.

4. Discussion of results from the non-dimensional model

4.1. Parametric studies using the non-dimensional analytical model

Our goal was to study the effects of inherent interlaminar frac-

ture toughness of the composite material eGIc and the non-dimen-

sional frictional force ~pm on (i) the maximum apparent fracture

toughness eGIcÿappÿmax and (ii) steady state bridging length ~c. Such

relationships are extremely useful in design process to evaluate

the influence of design variables on performance of the composite.

In this parametric study we assume that the DCB is loaded by end

couples instead of transverse forces. This assures steady state crack

propagation in the beam and effect of increasing crack length on

the results is thus eliminated. In the simulations, eGIc is varied from

10ÿ7 to10ÿ4 and ~pm ranged from 10ÿ10 (almost zero friction repre-

senting the case of unreinforced beam) to 0.1.

Fig. 11 shows that the steady state bridging length decreases

with increasing eGIc and ~pm. If the composite material is inherently

Fig. 8. Variation of apparent fracture toughness during crack propagation.

Fig. 10. Cohesive and spring elements in the FE model of the DCB.

Fig. 9. Traction–separation law for the cohesive element.
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tough, it will not allow a larger bridging length. Similarly a large

friction force also will reduce the bridging length. The maximum

apparent fracture toughness (eGIcÿappÿmax) is another measure to

evaluate the effect of translaminar reinforcement. Fig. 12 shows

that the maximum apparent fracture toughness, computed by Eq.

(16), varies linearly with increasing eGicÿappÿmax and ~pm. This result

is in accordance with Eq. (18). Since the range of ~pm is wider than

that of eGIc in reality, eGIcÿappÿmax is more sensitive to the value of ~pm.

In other words the apparent fracture toughness is dominated by

the translaminar reinforcement. From the results shown in Figs. 11

and 12, it is clear that higher friction force exerted by the z-pins

provides enhanced fracture toughness and at the same time re-

duces the bridging length. The latter is important to maintain the

stiffness of the structure for a larger bridging length leads to reduc-

tion in the stiffness of the structure.

4.2. Maximum allowable translaminar reinforcement

Even though large frictional force between the z-pin and the

surrounding matrix material is desirable for increased fracture

toughness, a frictional force beyond a critical value will cause the

beam to fail. The maximum normal strain in a beam cross section

is given by

emax ¼
h

2

d
2
w

dx
2

�����

����� ð20Þ

Note the strain is already non-dimensional and the right hand

side of the above equation can be written as:

emax ¼
1

2

d
2
~w

d~x2

�����

����� ¼
~j

2
ð21Þ

where ~j is the non-dimensional curvature which has the maximum

value at ~x ¼ 0. Using Eqs. (16) and (18) we obtain

~j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eGIc þ

1

2
~pm

r
ð22Þ

Let us assume the allowable strain in the composite is given by

eu.

Then,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eGIc þ

1

2
~pm

r
< 2eu ð23Þ

Fig. 11. Non-dimensional steady state bridging length.

Fig. 12. Apparent fracture toughness as a function of maximum friction force and interlaminar fracture toughness.
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From the above equation one can derive

~pm < 2ð4e2u ÿ
eGIcÞ

or

pm ¼ Nfm < 2
3
Ee2u ÿ

2GIc

h

ð24Þ

The above equation provides an upper limit on the z-pin density

which should be taken into consideration in the design of transla-

minar reinforcements. Thus the allowable density or maximum

frictional force of z-pins can be determined at a given geometry

and material properties of a composite material.

In order to verify the result for the maximum allowable transla-

minar reinforcement given in Eq. (24), we performed finite element

analysis of a specimen. The properties used were: GIc ¼ 0:258

N=mm;h ¼ 1:6 mm;E ¼ 138 GPa;Nfm ¼ 1:58 N=mm2 [7], The FE

simulation was used to calculate the maximum strain in the liga-

ments of the DCB specimen at the instant of crack propagation,

and it was compared with the eu obtained from Eq. (24). Two

loading cases, namely end couples and transverse forces, were

considered. For the set of properties used Eq. (24) yields a maxi-

mum strain eu = 4.5 � 10ÿ3. Note that if Nfm > 1:58 N=mm2 then

the maximum strain exceeds the ultimate strain. From the FE

simulations we obtained emax = 4.521 � 10ÿ3 for the case of end

couples and emax = 3.906 � 10ÿ3 for the case of transverse loading

of the DCB (Fig. 13). The results indicate the strains in the beam

are higher for the moment loading compared to that due to the

transverse loading. However, in a practical structure the delamina-

tion will experience a combination of shear and moment loadings,

and hence the conservative value should be used. That means the

maximum allowable stitch density given in Eq. (24) should be used

although it is applicable only to moment loading case, and hence

conservative.

4.3. Effect of tri-linear bridging law

So far we have used the linear softening bridging law for devel-

oping the non-dimensional analytical model and verifying the

same using FEA. Although this bridging law is simple, it may not

be realistic. Dai et al. [6] performed pull-out tests using z-pins of

various diameters to determine the actual bridging law. They

found that a high value of debonding force was reached before

the debonding of the pins began. After the debonding was initiated,

the pull-out force dropped to a lower value before reducing line-

arly to zero value as the pins were pulled out steadily against fric-

tional force that seemed to have a constant coefficient of friction.

They represented this pullout behavior by a tri-linear bridging

law as depicted in Fig. 14. The tri-linear behavior can be attributed

to an elastic deformation (from (0, 0) to (0.0185, 35.3) in Fig. 14),

debonding from surrounding matrix (from (0.0185, 35.3) to

(0.17, 14.86) in Fig. 14) and slip-out of z-pins (from (0.17, 14.86)

to (1.6, 0) in Fig. 14).

The finite element simulations of the DCB described in Section

3.2 were repeated with the tri-linear bridging law. We did not at-

Fig. 13. Comparison of strain with different loading types.

Fig. 14. Tri-linear bridging law is indicated by solid line. The dotted line is the

linear softening law in Fig. 3. The areas under the force–displacement diagram for

both laws are the same.

Fig. 15. Load–deflection curve from various bridging laws.
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tempt analytical solution as it will be very complicated due to the

piecewise continuous bridging law. The numerical values for the

tri-linear law were chosen such that the area under the force–dis-

placement curve, which is related to the increase in fracture tough-

ness, is equal to the linear softening law used in the earlier

example. That is the areas under the two force–displacement

curves in Fig. 14 are equal to each other. The resulting load–deflec-

tion diagram of the z-pinned DCB specimen is shown in Fig. 15. The

load deflection behavior is almost identical to that obtained using

the linear bridging law indicating that the apparent fracture tough-

ness is same in both cases. It must be noted that the peak force in

the tri-linear case is almost twice as that of the linear softening

law. The variations of crack length as a function of the DCB speci-

men opening (deflection) are also similar in both cases. This indi-

cates that the details of the bridging law do not seem to affect

the global behavior of the specimen as long as the energy dissi-

pated by the pins is properly accounted for.

5. Summary and conclusions

Mode I delamination propagation in DCB specimens containing

z-pins is studied. A simple analytical model based on linear

softening type bridging law for the z-pins has been developed and

suitable non-dimensional parameters have been identified. The

load–deflection curve of the DCB specimen was calculated using

the analytical model. It is seen that the bridging zone, wherein

the pins are partially pulled out, develops as the crack propagates,

but attains a steady state value. The length of the bridging zone is

a function of the mode I fracture toughness and the frictional force

between the z-pins and the surrounding material. An expression

was derived for the apparent or effective fracture toughness values.

Although increase in frictional force as the z-pins increases the

fracture toughness, there is an upper limit to this friction as the

DCB ligaments would break if the friction is very high. The limiting

value of the pin friction is derived.

The efficacy of the analytical model was evaluated by the sim-

ulation of the DCB specimen using finite element simulations. In

the FE model the delamination propagation was simulated by

cohesive elements and the z-pins were modeled as discrete nonlin-

ear elements. The results for load–deflection curve and the crack

bridging zone length agreed quite well with the analytical model.

As an alternative to the linear bridging law, a more realistic tri-lin-

ear bridging law was used in the FE simulations. It is found that the

global delamination behavior of the specimen was not affected

much as long as the energy dissipated by the pins is kept the same.

The non-dimensional model with few parameters will serve as a

design tool when translaminar reinforcements such as z-pins are

selected for laminated composite structures in order to improve

their fracture toughness. The analytical models will also be useful

in optimization studies and simulation of large composite struc-

tures containing translaminar reinforcements.
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